Abstract

Spinal cord injury (SCI) is a debilitating disease. Primary SCI results from direct injury to the spinal cord, whereas secondary injury is a side effect from subsequent edema and ischemia followed by activation of proinflammatory cytokines. These cytokines activate the prosurvival molecule nuclear factor-κB and generate obstacles in spinal cord reinnervation due to gliosis. Curcumin longa is an active compound found in turmeric, which acts as an antiinflammatory agent primarily by inhibiting nuclear factor-κB. Here, the authors study the effect of curcumin on SCI recovery. Fourteen female Sprague-Dawley rats underwent T9-10 laminectomy and spinal cord contusion using a weight-drop apparatus. Within 30 minutes after contusion and weekly thereafter, curcumin (60 mg/kg/ml body weight in dimethyl sulfoxide) or dimethyl sulfoxide (1 ml/kg body weight) was administered via percutaneous epidural injection at the injury site. Spinal cord injury recovery was assessed weekly by scoring hindlimb motor function. Animals were killed 6 weeks postcontusion for histopathological analysis of spinal cords and soleus muscle weight evaluation. Curcumin-treated rats had improved motor function compared with controls starting from Week 1. Body weight gain significantly improved, correlating with improved Basso-Beattie-Bresnahan scores. Soleus muscle weight was greater in curcumin-treated rats than controls. Histopathological analysis validated these results with increased neural element mass with less gliosis at the contusion site in curcumin-treated rats than controls. Epidural administration of curcumin resulted in improved recovery from SCI. This occurred with no adverse effects noted in experimental animals. Therefore, curcumin treatment may translate into a novel therapy for humans with SCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call