Abstract

In plants, lipid metabolism and remodelling are key mechanisms for survival under temperature stress. The present study attempted to compare the lipid profile in barley roots both under chilling stress treatment and in the subsequent recovery to stress. Lipids were obtained through a single-extraction method with a polar solvent mixture, followed by mass spectrometry analysis. The results indicate that lipid metabolism was significantly affected by chilling. Most of the glycerolipids analysed returned to control values during short- and long-term recovery, whereas several representative phosphatidic acid (PA) molecular species were edited during long-term recovery. Most of the PA molecular species that increased in the long-term had the same acyl chains as the phosphatidylcholine (PC) species that decreased. C34:2 and C36:4 underwent the most remarkable changes. Given that the mechanisms underlying the acyl-editing of PC in barley roots remain elusive, we also evaluated the contribution of lysophosphatidylcholine acyltransferases (HvLPCAT) and phospholipase A (HvPLA). In line with the aforementioned results, the expression of the HvLPCAT and HvPLA genes was up-regulated during recovery from chilling. The differential acyl-editing of PA during recovery, which involves the remodelling of PC, might therefore be a regulatory mechanism of cold tolerance in barley.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call