Abstract

Conventional computer-aided design (CAD) methodologies optimize a processor module for correct operation and prohibit timing violations during nominal operation. We propose recovery-driven design, a design approach that optimizes a processor module for a target timing error rate (ER) instead of correct operation. The target ER is chosen based on how many errors can be gainfully tolerated by a hardware or software error resilience mechanism. We show that significant power benefits are possible from a recovery-driven design approach that deliberately allows errors caused by voltage overscaling to occur during nominal operation, while relying on an error resilience technique to tolerate these errors. We present a detailed evaluation and analysis of such a CAD methodology that minimizes the power of a processor module for a target ER. We show how this design-level methodology can be extended to design recovery-driven processors-processors that are optimized to take advantage of hardware or software error resilience. We also discuss a gradual slack recovery-driven design approach that optimizes for a range of ERs to create soft processors-processors that have graceful failure characteristics and the ability to trade throughput or output quality for additional energy savings over a range of ERs. We demonstrate significant power benefits over conventional design-11.8% on average over all modules and ER targets, and up to 29.1% for individual modules. Processor-level benefits were 19.0%, on average. Benefits increase when recovery-driven design is coupled with an error resilience mechanism or when the number of available voltage domains increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.