Abstract
This paper studies a new recovery-based a posteriori error estimator for the conforming linear finite element approximation to elliptic interface problems. Instead of recovering the gradient in the continuous finite element space, the flux is recovered through a weighted $L^2$ projection onto $H(\mathrm{div})$ conforming finite element spaces. The resulting error estimator is analyzed by establishing the reliability and efficiency bounds and is supported by numerical results. This paper also proposes an adaptive finite element method based on either the recovery-based estimators or the edge estimator through local mesh refinement and establishes its convergence. In particular, it is shown that the reliability and efficiency constants as well as the convergence rate of the adaptive method are independent of the size of jumps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.