Abstract

Poly(ether ester)s consisting of poly(ethylene oxide) and poly(ethylene terephthalate) segments, EOET copolymers, could be used as shape memory polymers (SMP). Crystalline structural characters of the copolymers during the memory process were investigated by dynamic mechanical analysis, differential scanning calorimeter, wide-angle X-ray diffraction, polarizing microscopy, and recovery measurements. PEO crystals in stretched EOET copolymer preferentially oriented along fiber axis or stretch direction. During stretching, the structure of the copolymer undertake a transformation from spherulite to fiber, resulting in a crystalline morphology similar to shish-kebab, and recovery properties of stretched EOET samples were dependent on as-described crystalline structural characters that can be influenced by draw ratio. Driving forces for contraction come from the oriented chains, and only oriented or extended chains can be contributive to the recovery of deformation; these extended chains involve both crystalline and amorphous segments. The recovery process in shape memory behavior was noticed to be deorientation of oriented chains due to thermodynamic entropy effect, and was divided into three stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call