Abstract

Replication of the rotavirus genome involves two steps: (i) transcription and extrusion of transcripts and (ii) minus-strand RNA synthesis in viral complexes containing plus-strand RNA. In this study, we showed evidence for the importance of the viral nonstructural protein of rotavirus, NSP2, in the replication of viral RNAs. RNA-binding properties of NSP2 were tested by UV cross-linking in vivo (in rotavirus-infected MA104 cells and recombinant baculovirus-expressing NSP2-infected Sf9 cells). In rotavirus-infected cells, NSP2 is bound to the 11 double-stranded RNA genomic segments of rotavirus. Quantitative analysis (using hydrolysis by RNase A) is consistent with NSP2 being directly bound to partially replicated viral RNA. Using various monoclonal antibodies and specific antisera against the structural (VP1, VP2, and VP6) and nonstructural (NSP1, NSP2, NSP3, and NSP5) proteins, we developed a solid-phase assay for the viral replicase. In this test, we recovered a viral RNA-protein complex with replicase activity only with a monoclonal antibody directed against NSP2. Our results indicated that these viral complexes contain the structural proteins VP1, VP2, and VP6 and the nonstructural protein NSP2. Our results show that NSP2 is closely associated in vivo with the viral replicase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.