Abstract

Three-dimensional tomographic reconstruction using intra-operative mobile C-arms could provide physicians with new and exciting tools for image-guided surgery. Recovery of the projection geometry of mobile X-ray systems is a crucial step for such reconstruction procedures. Recent work on medical imaging describes the use of optical or electro-magnetic sensor systems in order to navigate surgical instruments. These systems can also be used for the estimation of C-arm motion, and therefore for the recovery of the projection geometry of the X-ray C-arm. In this case, the mathematical problem that needs to be solved is equivalent to the hand–eye calibration well studied by both the computer vision and robotics community. We first study the recovery of the motion and projection geometry using five different hand–eye calibration methods proposed in the literature. The optical navigation system POLARIS from Northern Digital Inc. was used in our experiments. The results of the estimated motion and projection geometry using the five hand–eye calibration methods are compared with the same results obtained using an off-the-shelf CCD camera attached to the mobile C-arm. The experimental results include three-dimensional tomographic reconstruction results using our mobile C-arm. We show that even though the motion of the C-arm is more precisely recovered using the navigation system, the projection geometry is better estimated using the attached CCD camera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.