Abstract

Competition among plants of the same species often results in power-law relations between measures of crowding, such as plant density, and average size, such as individual biomass. Yoda’s self-thinning rule, the constant final yield rule, and metabolic scaling, all link individual plant biomass to plant density and are widely applied in crop, forest, and ecosystem management. These dictate how plant biomass increases with decreasing plant density following a given power-law exponent and a constant of proportionality. While the exponent has been proposed to be universal and thus independent of species, age, and environmental, and edaphic conditions, different theoretical mechanisms yield absolute values ranging from less than 1 to nearly 2. Here, eight hypothetical mechanisms linking the exponent to constraints imposed on plant competition are featured and contrasted. Using dimensional considerations applied to plants growing isometrically, the predicted exponent is -3/2 (Yoda's rule). Other theories based on metabolic arguments and network transport predict an exponent of -4/3. These rules, which describe stand dynamics over time, differ from the 'rule of constant final yield' that predicts an exponent of -1 between the initial planting density and the final yield attained across stands. The latter can be recovered from statistical arguments applied at the time scale in which the site carrying capacity is approached. Numerical models of plant competition produce plant biomass-density scaling relations with an exponent between -0.9 and -1.8 depending on the mechanism and strength of plant-plant interaction. These different mechanisms are framed here as a generic dynamical system describing the scaled-up carbon economy of all plants in an ecosystem subject to differing constraints. The implications of these mechanisms for forest management under a changing climate are discussed and recent research on the effects of changing aridity and site 'quality' on self-thinning are highlighted.

Highlights

  • Power-law relations in ecology remain a subject of fascination and research interest given their simultaneous ubiquity and practical significance (Thompson, 1942; Vogel, 1988; Niklas, 1994; Brown and West, 2000; Farrior et al, 2016; West, 2017)

  • The constant final yield rule applies when stands sown at different initial densities p0 all achieve the same biomass per unit area or yield yc at a fixed time after sowing (i.e., yc = f (p0); Figures 1B,C, 2)

  • When density-driven mortality or self-thinning is absent (i.e., p(t) = p0), this rule leads to an exponent −1 between w(p0|t) and p0, as it can be shown by multiplying both sides of Equation (3) by p0, and recalling that y(t) = w(t)p(t)

Read more

Summary

INTRODUCTION

Power-law relations in ecology remain a subject of fascination and research interest given their simultaneous ubiquity and practical significance (Thompson, 1942; Vogel, 1988; Niklas, 1994; Brown and West, 2000; Farrior et al, 2016; West, 2017). The usage of the term “rule” reflects the extensive experimental evidence supporting the universal character of the exponents of the size-density relations. The significance of these power-law relations to crop production, forestry and ecosystem management is rarely in dispute and has been reviewed elsewhere (Willey and Heath, 1969; Drew and Flewelling, 1977, 1979; White, 1981; Westoby, 1984; Peet and Christensen, 1987; Friedman, 2016). The ecological mechanisms responsible for their apparent universal character remains a subject of inquiry and debate since their inception in 1864 (Spencer, 1864) This debate frames the scope of this review

The Self-Thinning Rule
The Constant Final Yield Rule
Neighborhood interactions
Interpreting Self-Thinning Exponents
THEORY
Size distribution arguments ac Canopy area per unit ground area over D2
Extended Analysis
Allometry and Growth Habits as Constraints
Mechanism 2
Mechanism 3
A Steady State Resource Balance
Mechanism 4
Mechanism 5
Extended Analysis: the Effects of Invariant
Mechanism 6
Phase Space Trajectories Constraints on α
Mechanism 7
Mechanism 8
Effects of Competition Type on α and the Emergence of Constant Final Yield
DATA AVAILABILITY STATEMENT
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.