Abstract

This paper deals with the binary analysis of executable programs, with the goal of understanding how they access memory. It explains how to statically build a formal model of all memory accesses. Starting with a control-flow graph of each procedure, well-known techniques are used to structure this graph into a hierarchy of loops in all cases. The paper shows that much more information can be extracted by performing a complete data-flow analysis over machine registers after the program has been put in static single assignment (SSA) form. By using the SSA form, registers used in addressing memory can be symbolically expressed in terms of other, previously set registers. By including the loop structures in the analysis, loop indices and trip counts can also often be expressed symbolically. The whole process produces a formal model made of loops where memory accesses are linear expressions of loop counters and registers. The paper provides a quantitative evaluation of the results when applied to several dozens of SPEC benchmark programs. Because static analysis is often incomplete, the paper ends by describing a lightweight instrumentation strategy that collects at run time enough information to complete the program's symbolic description.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.