Abstract
The parameterization of a rigid-body motion can be done using multiple algebraic entities. A very important criterion when choosing a parameterization methods is the number of algebraic equations and variables. Recently, orthogonal dual tensors proved to be a complete tool for computing rigid body displacement and motion parameters. The present research is focused on developing new methods for recovering kinematic data when the state of features attached to a body during a rigid displacement is available. The proof of concept is sustained by computational solutions both for the construction of orthogonal dual tensors and for the recovery algorithms of the dual quaternion and the dual Rodrigues vector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.