Abstract
In this paper, an inverse problem for galvanic corrosion in two-dimensional Laplace’s equation was studied. The considered problem deals with experimental measurements on electric potential, where due to lack of data, numerical integration is impossible. The problem is reduced to the determination of unknown complex coefficients of approximating functions, which are related to the known potential and unknown current density. By employing continuity of those functions along subdomain interfaces and using condition equations for known data leads to over-determined system of linear algebraic equations which are subjected to experimental errors. Reconstruction of current density is unique. The reconstruction contains one free additive parameter which does not affect current density. The method is useful in situations where limited data on electric potential are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.