Abstract

We contrast the performance of two methods of imposing constraints during the tracking of articulated objects, the first method preimposing the kinematic constraints during tracking and, thus, using the minimum degrees of freedom, and the second imposing constraints after tracking and, hence, using the maximum. Despite their very different formulations, the methods recover the same pose change. Further comparisons are drawn in terms of computational speed and algorithmic simplicity and robustness, and it is the last area which is the most telling. The results suggest that using built-in constraints is well-suited to tracking individual articulated objects, whereas applying constraints afterward is most suited to problems involving contact and breakage between articulated (or rigid) objects, where the ability to test tracking performance quickly with constraints turned on or off is desirable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.