Abstract

We consider the inverse problem of finding a magnitude-symmetric matrix (matrix with opposing off-diagonal entries equal in magnitude) with a prescribed set of principal minors. This problem is closely related to the theory of recognizing and learning signed determinantal point processes in machine learning, as kernels of these point processes are magnitude-symmetric matrices. In this work, we prove a number of properties regarding sparse and generic magnitude-symmetric matrices. We show that principal minors of order at most ℓ, for some invariant ℓ depending only on principal minors of order at most two, uniquely determine principal minors of all orders. In addition, we produce a polynomial-time algorithm that, given access to principal minors, recovers a matrix with those principal minors using only a quadratic number of queries. Furthermore, when principal minors are known only approximately, we present an algorithm that approximately recovers a matrix, and show that the approximation guarantee of this algorithm cannot be improved in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.