Abstract

Recovered Finite Element Methods (R-FEM) have been recently introduced in Georgoulis and Pryer [Comput. Methods Appl. Mech. Eng. 332 (2018) 303–324]. for meshes consisting of simplicial and/or box-type elements. Here, utilising the flexibility of the R-FEM framework, we extend their definition to polygonal and polyhedral meshes in two and three spatial dimensions, respectively. An attractive feature of this framework is its ability to produce arbitrary order polynomial conforming discretizations, yet involving only as many degrees of freedom as discontinuous Galerkin methods over general polygonal/polyhedral meshes with potentially many faces per element. A priori error bounds are shown for general linear, possibly degenerate, second order advection-diffusion-reaction boundary value problems. A series of numerical experiments highlight the good practical performance of the proposed numerical framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.