Abstract

Gallium-based liquid metals are applied in the fabrication of soft electronics because of their conductivity and flexibility. However, the large surface tension and weak adhesion of liquid metals limit the available printing substrates. Recent researches indicate that amalgamating metal particles can turn liquid metal from fluid into a paste which has superb electrical conductivity, plasticity, and strong adhesion to substrates. In this work, a recoverable liquid metal paste was made by mixing eutectic Ga-In alloy and nonmetallic SiO2 (quartz) particles (Ga-In-SiO2 paste, called GIS). GIS has excellent conductivity and printable properties similar to those of previously reported liquid metal pastes. Furthermore, the bonding between Ga-In alloy and quartz particles is reversible. In acidic or alkaline solution, Ga-In alloy can be separated from quartz particles and agglomerated to bulk by stirring. Moreover, the study of the mechanism of adhesion behavior suggests that extruding fresh liquid metal droplets to form more oxide and shearing friction are the critical factors for adhesion. This work proposed a new liquid metal paste with a reversible rheological property and promoted the understanding of the working principle of liquid metal paste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.