Abstract

Enzymatic biofuel cells (EBFCs) have drawn great attentions because of its potential in energy conversion. However, designing of highly efficient EBFCs which can adapt to the anaerobic system is still a great challenge. In this study, we propose a novel hybrid enzymatic biofuel cell (HEBFC) which was fabricated by a glucose dehydrogenase modified bioanode and a solid-state silver oxide/silver (Ag2O/Ag) cathode. The as-assembled HEBFC exhibited an open circuit potential of 0.59V and a maximum power output of 0.281mWcm(-2) at 0.34V in air saturated buffer. Especially, due to the introduction of Ag2O/Ag, our HEBFC could also operate under anaerobic condition, while the maximum power output would reach to 0.275mWcm(-2) at 0.34V. Furthermore, our HEBFC had stable cycle operation and could keep high power output for a certain time as the result of the regeneration of Ag2O. Our work provides a new concept to develop EBFCs for efficient energy conversion in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.