Abstract

Organic carbon isotopic composition (δ13Corg) in loess deposits is an important indicator of terrestrial paleovegetation, and it has been widely used for paleoenvironmental reconstruction in aeolian sediments around the world. However, little research has been done on the variation and paleoenvironmental implication of δ13Corg from loess deposits on Shengshan Island, East China Sea, during the last glacial period (LG). In this research, we present optically stimulated luminescence (OSL) ages, total organic carbon (TOC) data and δ13Corg records of the loess section at Chenqianshan (CQS) on Shengshan Island. Additionally, to study the effectiveness of δ13Corg in documenting paleoenvironmental changes, magnetic susceptibilities and diffuse reflectance spectra were surveyed. TOC concentration for the CQS loess section ranged from 0.11% to 0.47%, and the δ13Corg composition of the CQS loess section varied between −20.80‰ and −24.56‰ during the LG. The average value of C4 abundance was 21.31%. TOC, δ13Corg, χfd, and Hm/(Hm + Gt) curves for the CQS loess section showed similar patterns. The results of our study indicated that the vegetation of the CQS loess deposit was mainly C3/C4 mixed vegetation, and C3 vegetation was the most important vegetation. The comparison between the δ13Corg curve for the CQS section and other existing δ13Corg records of the loess sections from central and northern China showed similar trends and their vegetation succession exhibited synchronous change during the LG. Based on a comparison of the δ13Corg record, C4 abundance and χfd of the CQS section and other global geological records, it was concluded that the mutual effects of precipitation and temperature caused the change of paleovegetation in loess deposits on islands in the East China Sea during the LG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.