Abstract

Photocathodes that provide high electron-spin polarization (ESP) and high quantum efficiency (QE) can significantly enhance the physics capabilities of electron accelerators. We report record-level QE from a high-polarization strained GaAs/GaAsP superlattice photocathode fabricated with a Distributed Bragg Reflector (DBR). The DBR photocathode technique enhances the absorption of incident laser light thereby enhancing QE, but as literature suggests, it is very challenging to optimize all of the parameters associated with the fabrication of complicated photocathode structures composed of many distinct layers. Past reports of DBR photocathodes describe high polarization but typically QE of only ∼1%, which is comparable to QE of high polarization photocathodes grown without a DBR structure. This work describes a strained GaAs/GaAsP superlattice DBR photocathode exhibiting a high polarization of 84% and significantly enhanced QE of 6.4%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call