Abstract
The acquisition of electroencephalograms (EEG) during functional magnetic resonance imaging (fMRI) experiments raises important practical issues of patient safety. The presence of electrical wires connected to the patient in rapidly changing magnetic fields results in currents flowing through the patient due to induced electromotive forces (EMF), by three possible mechanisms: fixed loop in rapidly changing gradient fields; fixed loop in a RF electromagnetic field; moving loop in the static magnetic field. RF-induced EMFs were identified as the most important potential hazard. We calculated the minimum value of current-limiting resistance to be fitted in each EEG electrode lead for a representative worst case loop, and measured RF magnetic field intensity and heating in a specific type of current-limiting resistors. The results show that electrode resistance should be > or = 13 k(omega) for our setup. The methodology presented is general and can be useful for other centers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.