Abstract

This paper discusses the use of solid solutions of multicomponent semiconductors for solar energy converted and storage devices in some structural and technological formation options suitable for monolithic integration. The eight-component system under consideration makes it possible to obtain varizon layers from Eg = 6.4 eV (AlN) to Eg = 0.18 eV (InSb) with any set of heterogeneous macro-, micro- and nanosized LED (laser) structures, which allows conduct classical sequential and parallel electronic and optical processing of information, and convert photon fluxes into electric current and accumulate electrical energy in potential wells in the same chip. In this case, the entire spectrum of solar electromagnetic radiation from 200 nm (ultraviolet) to infrared radiation of 12000 nm is used, which is effectively absorbed in the gap layer practically without loss of energy transfer to one or several narrow-band regions specially created by the program in the epitaxy of the varizon layers. The article analyzes examples of the implementation of some heterostructures for converting solar energy into electrical energy, such as AlGaAsSb / GaSb and GaInAsP / InP. The options for optimizing the luminous flux and resistance of contacts in graded-gap construction are considered using the example of an optoelectronic converter. The constructive use of rektenna for energy conversion is considered. The possibilities of using III-nitrides and nanocarbonitrides for energy storage layers of enestors are analyzed. For the formation of optimal nano-templates, as it was established in the course of studies of a simplified model of the process of defect formation, with radii of nano-creations of less critical, dislocation can be achieved with any thickness of the nanotemple. In this case, the curves of the conditionally dislocation-free relief are dominated by three-dimensional limiting effects. Thus, thermodynamic parameters (temperature, pressure) and precursors were experimentally determined in terms of studies of nanocarbide processes in MOСVD epitaxy III-nitrides on nanoparticles of sapphire, in which self-formation of consolidated nanocarbides is realized for layers of energy accumulation on the basis of which, at the present time, the Research Institute of Micro Devices NASU continues research on working out and bringing to the industrial sample the technology of a super capacitor in an enestor chip. These studies and practical developments have demonstrated the great potential of zonistor heterogeneous structures on Iii-nitrides for highly efficient transformation and accumulation of solar radiation energy. The developed gas-phase technology of selective epitaxy makes it possible to obtain defect-free heterostructures, which ensures a high quantum yield of conversion of the whole broad spectrum of solar radiation into electric current and accumulate its energy in one integrated structure. The high quantum yield of the photoelectric effect in nanostructures of solid solutions of the BAlGaInNPAsSb system compensates for technological costs and significantly changes the very paradigm of not only providing energy to electronic functional devices, but also makes it possible in principle to develop a new perspective energy resource for many applications. Ref. 18, fig. 9, tabl. 1.</p

Highlights

  • При освещении со стороны подложки из фосфида индия область спектральной чувствительности доходит до 1,7 мкм

  • Keywords — III-nitrides; solar batteries; heterogeneous solid solutions А3В5; accumulation of energy; enestors; zonistors; rectens

Read more

Summary

ВВЕДЕНИЕ

На основе структур с переменной шириной запрещённой зоны представляется возможным реализовать функциональные элементы последовательного и параллельного типа, в которых преобразования сигналов происходят в микро-, нанообластях твердых растворов порядка диффузионной длины носителей заряда. В одной монолитной структуре излучателей, фотоприёмников, передающих сред и аккумуляторов энергии, которые легко реализуются на многокомпонентных твердых растворах А3В5 [8], открываются перспективы комплексной микроминиатюризации оптоэлектронных устройств на одном чипе. Технологическая гибкость многокомпонентных материалов в сочетании с нанотемплетными (согласующими параметрами решёток) слоями облегчают решение проблемы совмещения кремнийтранзисторных микроструктур с соединениями А3B5, и создания на их основе функциональных элементов, сочетающих достижения микро-, оптоэлектроники [1] для эффективных сред квантовых компьютеров, работающих при физиологических температурах [9]

МЕТОДЫ ПРЕОБРАЗОВАНИЯ И НАКОПЛЕНИЯ
ОПТИМИЗАЦИЯ СВЕТОВОГО ПОТОКА И
РЕКТЕНА – НАНОАНТЕННЫЙ КВАНТОВЫЙ СВЧ
Суперконденсаторы
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call