Abstract

Record-breaking marine heatwaves (MHWs) occurred in the western North Pacific during the summer of 2020. These unprecedented MHWs were consistent with favorable large-scale conditions that are linked to an anomalous western North Pacific subtropical high (WNPSH), resulting mainly from sea surface temperature (SST) anomalies across the tropical oceans. In addition, a moderate La Niña-like pattern was also conducive to transporting warm seawater to the western North Pacific. Mixed-layer heat budgets suggest that surface heat flux contributed to the SST anomaly in the western subtropical Pacific. In contrast, oceanic heat advection dominanted in the South China Sea and the western equatorial Pacific. Numerical model experiments indicated that the tropical Indian Ocean SST anomalies were responsible for the enhanced WNPSH. The increased zonal SST gradient across the tropical Pacific also played an important role. Inter-ocean interactions can modulate climate variability through ocean-atmospheric coupling and deserve more attention when predicting MHWs within the context of global warming. In addition, it is critical to consider MHWs as a powerful tool in detecting acute, intense thermal stress events in the coral bleaching pre-warning system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.