Abstract

The effect of the local interaction of a metal ion with the solvent on the conformations of calcium complexes of arylazacrown ethers and an azacrown-containing dye was studied using the density functional method with the PBE and B3LYP functionals. The structures were studied and the interaction energies were determined for the calcium complexes with n = 1–12 water or acetonitrile molecules. It was found that the inner coordination sphere of the free Ca2+ cation contains six H2O or seven MeCN molecules. The cation—acetonitrile interaction energy is higher than the cation—water interaction energy up to the moment the second solvation shell of the cation is almost complete (n = 11). The inner coordination sphere of Ca2+ in the macrocycle cavity contains at most three water molecules, while the fourth one is displaced to the second coordination sphere. Taking into account the local interaction with the solvent (H2O or MeCN), the conformers of the calcium complexes of arylazacrown ethers and the azacrown-containing dye were studied. It was shown that the presence of two to four water molecules in the coordination sphere of the cation reduces the relative energies of the conformers with broken metal—nitrogen bond, thus favoring ground-state metal recoordination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call