Abstract

Photoinduced recoordination of Ca2+ complexes of the photochromic azacrown ethers is studied by the density functional method. The study included model arylazacrown ethers containing various acceptor groups in the aromatic ring in the para position to the azacrown ether moiety and a real azacrown-containing styryl dye. It is found that both free azacrown ethers and their complexes can adopt two types of conformations: (1) axial conformations, in which the aromatic ring axis passing through the crown ether nitrogen Ncr and the opposite atom of the aromatic ring is perpendicular to the root-mean-square (RMS) plane of the crown ether (least-squares fitted plane for all the crown ether atoms), and (2) equatorial conformations, in which the aromatic ring axis only slightly deflects from the RMS plane of the crown ether. In the equatorial conformers, the metal cation is coordinated only to the O atoms of the azacrown ether cycle, the metal—nitrogen bond is broken, and Ncr is conjugated with the aromatic ring. In the axial conformers, the metal cation is additionally coordinated to Ncr. It is found that the presence of an acceptor group bearing a formal positive charge decreases the relative energy of the equatorial conformer and favors metal—nitrogen bond dissociation, which results in the recoordination of the metal cation. However, a long distance between the charged group and Ncr has the reverse effect. The photoinduced recoordination observed in the alkaline-earth metal complexes of the photochromic azacrown ethers is explained by the transitions between the axial and equatorial conformers facilitated by the charge transfer in the excited state of the complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.