Abstract
The inverse problem of recovery of a potential on a quantum tree graph from the Weyl matrix given at a number of points is considered. A method for its numerical solution is proposed. The overall approach is based on the leaf peeling method combined with Neumann series of Bessel functions (NSBF) representations for solutions of Sturm–Liouville equations. In each step, the solution of the arising inverse problems reduces to dealing with the NSBF coefficients. The leaf peeling method allows one to localize the general inverse problem to local problems on sheaves, while the approach based on the NSBF representations leads to splitting the local problems into two‐spectrum inverse problems on separate edges and reduces them to systems of linear algebraic equations for the NSBF coefficients. Moreover, the potential on each edge is recovered from the very first NSBF coefficient. The proposed method leads to an efficient numerical algorithm that is illustrated by numerical tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.