Abstract

An approach for solving a variety of inverse coefficient problems for the Sturm–Liouville equation −y″ + q(x)y = ρ2y with a complex valued potential q(x) is presented. It is based on Neumann series of Bessel functions representations for solutions. With their aid the problem is reduced to a system of linear algebraic equations for the coefficients of the representations. The potential is recovered from an arithmetic combination of the first two coefficients. Special cases of the considered problems include the recovery of the potential from a Weyl function, inverse two-spectrum Sturm–Liouville problems, as well as the inverse scattering problem on a finite interval. The approach leads to efficient numerical algorithms for solving coefficient inverse problems. Numerical efficiency is illustrated by several examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.