Abstract

We address the problem of reconstructing a polygon from the multiset of its edges. Given [Formula: see text] line segments in the plane, find a polygon with [Formula: see text] vertices whose edges are these segments, or report that none exists. It is easy to solve the problem in [Formula: see text] time if we seek an arbitrary polygon or a simple polygon. We show that the problem is NP-complete for weakly simple polygons, that is, a polygon whose vertices can be perturbed by at most [Formula: see text], for any [Formula: see text], to obtain a simple polygon. We give [Formula: see text]-time algorithms for reconstructing weakly simple polygons: when all segments are collinear or the segment endpoints are in general position. These results extend to the variant in which the segments are directed. We study related problems for the case that the union of the [Formula: see text] input segments is connected. (i) If each segment can be subdivided into several segments, find the minimum number of subdivision points to form a weakly simple polygon. (ii) If new line segments can be added, find the minimum total length of new segments that creates a weakly simple polygon. We give worst-case upper and lower bounds for both problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call