Abstract

The first step to gain optical control over the ultrafast processes initiated by light in solids is a correct identification of the physical mechanisms at play. Among them, exciton formation has been identified as a crucial phenomenon which deeply affects the electro-optical properties of most semiconductors and insulators of technological interest. While recent experiments based on attosecond spectroscopy techniques have demonstrated the possibility to observe the early-stage exciton dynamics, the description of the underlying exciton properties remains non-trivial. In this work we propose a new method called extended Ptychographic Iterative engine for eXcitons (ePIX), capable of reconstructing the main physical properties which determine the evolution of the quasi-particle with no prior knowledge of the exact relaxation dynamics or the pump temporal characteristics. By demonstrating its accuracy even when the exciton dynamics is comparable to the pump pulse duration, ePIX is established as a powerful approach to widen our knowledge of solid-state physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.