Abstract

The paper considers an inverse problem of determining the coefficients in the model of small transverse vibrations of a homogeneous finite string one end of which is placed in a moving medium and the other is free. The vibrations are simulated by a hyperbolic equation on an interval. One boundary condition has a nonclassical form. Additional data for solving the inverse problem are the values of the solution of the forward problem with a known fixed value of the spatial argument. In the inverse problem, it is required to determine the function in the nonclassical boundary condition and a functional factor on the right-hand side of the equation. Uniqueness and existence theorems for the inverse problem are proved. For the forward problem, conditions for unique solvability are established in a form that simplifies the analysis of the inverse problem. For the numerical solution of the inverse problem, an algorithm is proposed for the stage-by-stage separate reconstruction of the sought-for functions using the method of successive approximations for integral equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.