Abstract

Reconstruction of the absorption coefficient from photoacoustic signals is discussed. The photoacoustic (PA) signals were acquired by using a ring-shaped P(VDF-TrFE) acoustic sensor coaxially arranged with an optical fiber. The acoustic sensor scanned the measured object. The linearized image reconstruction method previously presented by the authors was modified for the measurement with the coaxial probe. The distribution of the absorption coefficient was reconstructed by solving the inverse problem based on the PA wave equation and the photon diffusion equation. The linearized forward model was formulated by solving the partial differential equations with finite element method. To eliminate the effect of the unknown background on the PA signal, the differences between the PA signals measured at different positions were used for the image reconstruction. The image reconstruction method was validated by numerical and phantom experiments. Moreover, the reconstructed images with the Tikhonov and lp sparsity regularization methods were compared from the standpoints of spatial resolution, robustness to noise and quantification of the absorption coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.