Abstract

The dorsal root entry zone is often used in research to examine the disconnection between the central and peripheral parts of the nervous system which occurs following injury. Our laboratory and others have used transplantation of olfactory ensheathing cells (OECs) to repair experimental spinal cord injuries. We have previously used a four dorsal root (C6–T1) transection model to show that transplantation of OECs can reinstate rat forelimb proprioception in a climbing task. Until now, however, we have not looked in detail at the anatomical interaction between OECs and the peripheral/central nervous system regions which form the transitional zone. In this study, we compared short- and long-term OEC survival and their interaction with the surrounding dorsal root tissue. We reveal how transplanted OECs orient toward the spinal cord and allow newly formed axons to travel across into the dorsal horn of the spinal cord. Reconstruction of the dorsal root entry zone was supported by OEC ensheathment of axons at the injured site and also at around 3 mm further away at the dorsal root ganglion. Quantitative analysis revealed no observable difference in dorsal column axonal loss between transplanted and control groups of rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call