Abstract

Previously, surgical reconstruction of the transected dog spinal cord by the delayed nerve graft technique has been shown to result in reinnervation of the nerve graft by axons. In the present study, we compared the results of surgical reconstruction of the severely contused cat spinal cord by the delayed nerve graft technique alone to those after reconstruction with a similar nerve graft plus cultured peripheral non-neuronal cells implanted between the grafted nerve and the spinal cord stumps. The spinal cord-nerve graft junction was examined by light and electron microscopy. The cultured cells were prelabelled with tritiated thymidine and their location after implantation determined by autoradiography. By 3 days after spinal cord reconstruction, the prelabelled cells were present at the junction and had migrated into the nerve graft and also into the spinal cord stumps where they were observed near axons. By 7 days, physical connections were observed bridging the junction between the spinal cord and nerve graft and axons ensheathed by Schwann cells had already penetrated at least 1 mm into the nerve graft. Wound healing took at least a week longer in animals repaired with a nerve graft alone. At one year or later after reconstructive surgery, in both groups of animals, the grafted nerve was reinnervated with myelinated and unmyelinated axons. Thus, the severely contused cat spinal cord could be reconstructed with the delayed nerve graft technique alone but the use of the cultured cells appeared to enhance wound healing and decrease the time required for axon elongation into the nerve graft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call