Abstract

Target images recorded with range-gated laser imaging systems and conventional passive imaging systems through rapidly changing turbid mediums inevitably suffer from inhomogeneous degradations. Consequently, this makes the images partly or entirely different from their true targets and eventually has adverse effects on target identification. To date, the inhomogeneous degradations are still not finely eliminable despite utilizing adaptive optical methods and pure mathematical signal improvement techniques. Herein, we demonstrate an image restoration method involving intrinsic physical evolution of light beams based on the backscattering images of a turbid medium. The corresponding mathematical signal processing algorithms are applied for restoring the true target images in the presence of rapidly changing inhomogeneous degradations. This technique would benefit target imaging through moving cloud/mist in air and flowing muddy masses under water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.