Abstract
Single-molecule-localization-based super-resolution microscopic technologies, such as stochastic optical reconstruction microscopy (STORM), require lengthy runtimes. Compressed sensing (CS) can partially overcome this inherent disadvantage, but its effect on super-resolution reconstruction has not been thoroughly examined. In CS, measurement matrices play more important roles than reconstruction algorithms. Larger measurement matrices have better restricted isometry properties (RIPs). This paper proposes, analyzes, and compares uses of higher resolution cameras and interpolation to achieve better outcomes. Statistical results demonstrate that super-resolution reconstructions is significantly improved by interpolating low-resolution STORM raw images and using point-spread-function-based measurement matrices with better RIPs. The analysis of publically accessible experimental data confirms this conclusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.