Abstract

The problem of blind image recovery using multiple blurry images of the same scene is addressed in this paper. To perform blind deconvolution, which is also called blind image recovery, the blur kernel and image are represented by groups of sparse domains to exploit the local and nonlocal information such that a novel joint deblurring approach is conceived. In the proposed approach, the group sparse regularization on both the blur kernel and image is provided, where the sparse solution is promoted by -norm. In addition, the reweighted data fidelity is developed to further improve the recovery performance, where the weight is determined by the estimation error. Moreover, to reduce the undesirable noise effects in group sparse representation, distance measures are studied in the block matching process to find similar patches. In such a joint deblurring approach, a more sophisticated two-step interactive process is needed in which each step is solved by means of the well-known split Bregman iteration algorithm, which is generally used to efficiently solve the proposed joint deblurring problem. Finally, numerical studies, including synthetic and real images, demonstrate that the performance of this joint estimation algorithm is superior to the previous state-of-the-art algorithms in terms of both objective and subjective evaluation standards. The recovery results of real captured images using unmanned aerial vehicles are also provided to further validate the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call