Abstract

In this paper, the authors study the reconstruction of a semiconductor doping profile or, equivalently, the equilibrium potential, from its LBIC (laser-beam-induced current) image. For the one-dimensional case, the authors first characterize the attainable class of current measurements, and from this they show the nonuniqueness of the inverse problem. Then the reconstruction of the equilibrium potential is reduced to finding two constants subject to some constraints. A reconstruction algorithm is established based on a least squares formulation of the problem. The case of noise-collapsed data is also discussed. For a special case of two-dimensional domain, the authors apply the one-dimensional algorithm supplemented with a correction from the other spatial direction to establish an alternate direction iteration algorithm for reconstruction of the two-dimensional equilibrium potential. The authors also present some numerical examples to illustrate the reconstruction results by these algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.