Abstract
The limited regenerative capacity in mammals has serious implications for cardiac tissue damage. Meanwhile, zebrafish has a high regenerative capacity, but the regulation of the heart healing process has yet to be elucidated. The dynamic nature of cardiac regeneration requires consideration of the inherent temporal dimension of this process. Here, we conducted a systematic review to find genes that define the regenerative cell state of the zebrafish heart. We then performed an in silico temporal gene regulatory network analysis using transcriptomic data from the zebrafish heart regenerative process obtained from databases. In this analysis, the genes found in the systematic review were used to represent the final cell state of the transition process from a non-regenerative cell state to a regenerative state. We found 135 transcription factors driving the cellular state transition process during zebrafish cardiac regeneration, including Hand2, Nkx2.5, Tbx20, Fosl1, Fosb, Junb, Vdr, Wt1, and Tcf21 previously reported for playing a key role in tissue regeneration. Furthermore, we demonstrate that most regulators are activated in the first days post-injury, indicating that the transition from a non-regenerative to a regenerative state occurs promptly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.