Abstract
The microstructures and transport properties of fibrous porous material are significant for chemical catalysts, textile engineering, electronic devices, etc. In this paper, a fractal Monte Carlo method (FMCM) is developed to reconstruct the random microstructure of fibrous porous material based on the fractal scaling laws of fiber columns. And, the two-point correlation function of reconstructed fibrous material is calculated, which shows the effectiveness of the FMCM reconstruction. Also, the single-phase fluid flow through the reconstructed random fibrous porous material is simulated by the finite element method. The predicted permeability indicates good agreement with available empirical formulas. It has been found that the effective permeability of fibrous porous material decreases with the increase of fractal dimensions for fiber column. However, the fractal dimension of fiber column width has a greater influence on the effective permeability of fibrous porous material compared with that of fiber column length. The proposed numerical method provides an effective tool to reconstruct the irregular microstructure and understand the complex transport mechanisms of fibrous porous material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.