Abstract
Radiocesium was released to the North Pacific coastal waters by the accident at the Fukushima Dai-ichi Nuclear Power Plant (1FNPP) of the Tokyo Electric Power Company (TEPCO) in March 2011. Since the radiocesium in the sediment off Fukushima was suggested as a possible source for the transfer of this radionuclide through the benthic food chain, we conducted numerical simulations of 137Cs in sediments off the Fukushima coast by using a model which incorporates dynamic transfer processes between seawater and the labile and refractory fractions in sediment particles. This model reproduced the measured temporal changes of 137Cs concentration in seabed surface sediment off Fukusima coasts, by normalizing the radiocsium transfer between seawater and sediment according to the particle diameter sizes. We found that the 137Cs level in sediment decreased by desorption during the first several months after the accident, followed by a reduction in the labile fraction until the end of 2012. The apparent decrease of the total radiocesium level in surface sediment was estimated to occur at rates of approximately 0.2 y−1 within a 20 km distance from the 1FNPP. The comparison of 137Cs level decreases in the demersal fish and the simulated temporal labile fraction in fine sediment demonstrated that the consideration of radiocesium transfer via sediment is important for determining the 137Cs depuration mechanism in some demersal fish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.