Abstract

Quantitative susceptibility mapping (QSM) is an emerging computational technique based on the magnetic resonance imaging (MRI) phase signal, which can provide magnetic susceptibility values of tissues. The existing deep learning-based models mainly reconstruct QSM from local field maps. However, the complicated inconsecutive reconstruction steps not only accumulate errors for inaccurate estimation, but also are inefficient in clinical practice. To this end, a novel local field maps guided UU-Net with Self- and Cross-Guided Transformer (LGUU-SCT-Net) is proposed to reconstruct QSM directly from the total field maps. Specifically, we propose to additionally generate the local field maps as the auxiliary supervision during the training stage. This strategy decomposes the more complicated mapping from total maps to QSM into two relatively easier ones, effectively alleviating the difficulty of direct mapping. Meanwhile, an improved U-Net model, named LGUU-SCT-Net, is further designed to promote the nonlinear mapping ability. The long-range connections are designed between two sequentially stacked U-Nets to bring more feature fusions and facilitate the information flow. The Self- and Cross-Guided Transformer integrated into these connections further captures multi-scale channel-wise correlations and guides the fusion of multiscale transferred features, assisting in the more accurate reconstruction. The experimental results on an in-vivo dataset demonstrate the superior reconstruction results of our proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.