Abstract

In this chapter, we describe an approach to reconstruct cellular signaling networks based on measurements of protein activation after different stimulation experiments. As experimental platform reverse-phase protein arrays (RPPA) are used. RPPA allow the measurement of proteins and phosphoproteins across many samples in parallel with minimal sample consumption using a panel of highly target protein-specific antibodies. Functional interactions of proteins are modeled using a Boolean network. We describe the Boolean network reconstruction approach ddepn (dynamic deterministic effects propagation networks), which uses time course data to derive protein interactions based on perturbation experiments. We explain how the method works, give a practical application example, and describe how the results can be interpreted. Furthermore prior knowledge on signaling pathways is essential for network reconstruction. Here we describe the use of our software rBiopaxParser to integrate prior knowledge on protein signaling available in public databases. All applied methods are freely available as open-source R software packages. We describe the preparation of RPPA data as well as all relevant programming steps to format the RPPA data, to infer the prior knowledge, and to reconstruct and analyze the protein signaling networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.