Abstract

The orbital floor is one of the most frequently damaged parts of the maxillofacial skeleton during facial trauma. Unfavorable aesthetic and functional outcomes are frequent when it is treated inadequately. The treatment consists of spanning the floor defect with a material that can provide structural support and restore the orbital volume. This material should also be biocompatible with the surrounding tissues and easily reshaped to fit the orbital floor. Although various autografts or synthetic materials have been used, there is still no consensus on the ideal reconstruction method of orbital floor defects. This study evaluated the applicability of solvent-preserved cadaveric cranial bone graft and its preliminary results in the reconstruction of the orbital floor fractures. Twenty-five orbital floor fractures of 21 patients who underwent surgical repair with cadaveric bone graft during a 2-year period were included in this study. Pure blowout fractures were determined in nine patients, whereas 12 patients had other accompanying maxillofacial fractures. Of the 21 patients, 14 had clinically evident diplopia (66.7 percent), 12 of them had enophthalmos (57.1 percent), and two of them had gaze restriction preoperatively. Reconstruction of the floor of the orbit was performed following either the subciliary or the transconjunctival approach. A cranial allograft was placed over the defect after sufficient exposure. The mean follow-up period was 9 months. Postoperative diplopia, enophthalmos, eye motility, cosmetic appearance, and complications were documented. None of the patients had any evidence of diplopia, limited eye movement, inflammatory reactions in soft tissues, infection, or graft extrusion in the postoperative period. Providing sufficient orbital volume, no graft resorption was detected in computed tomography scan controls. None of the implants required removal for any reason. Enophthalmos was seen in one patient, and temporary scleral show lasting up to 3 to 6 weeks was detected in another three patients. Satisfactory cosmetic results were obtained in all patients. This study showed that solvent-preserved bone, which is a nonsynthetic, human-originated, processed bioimplant, can be safely used in orbital floor repair and can be considered as another reliable treatment alternative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.