Abstract

The configuration and kinematics of continental deformation and its marginal plate tectonics on the Earth's surface are intrinsic manifestations of plate-mantle coupling. The complex interactions of plate boundary forces result in plate motions that are dominated by slab pull and ridge push forces and the effects of mantle drag; these interactions also result in continental deformation with a complex basin-mountain architecture and evolution. The kinematics and evolution of the western Pacific subduction and northeast Asian continental-margin deformation represent a first-order tectonic process whose nature and chronology remains controversial. This paper implements a “deep-time” reconstruction of the western Pacific subduction, continental accretion or collision and basin-mountain deformation in northeast Asia since 200Ma based on a newly revised global plate model. We use GPlates software to examine strain recovery, geological and seismic tomography constraints for the western Pacific plate subduction, and sequentially backward rotations of deforming features. The results indicate a NW–SE-oriented shortening from 200 to 137Ma, a NWW–SEE-oriented extension from 136 to 101Ma, a nearly N–S-oriented extension and uplift with a short-term NWW–SEE-oriented compressional inversion in northeast China from 100 to 67Ma, and a NW–SE- and nearly N–S-oriented extension from 66Ma to the present day. The western Pacific oceanic plate subducted forward under East Asia along Mudanjiang-Honshu Island during the Jurassic, and the trenches retreated to the Sikhote-Alin, North Shimanto, and South Shimanto zones from ca. 137–128Ma, ca. 130–90Ma, and in ca. 60Ma, respectively. Our time-dependent analysis of plate motion and continental deformation coupling suggests that the multi-plate convergent motion and ocean-continent convergent orogeny were induced by advance subduction during the Jurassic and earliest Cretaceous. Our analysis also indicates that intra-continent rifting and back-arc extension were triggered by trench retreat during the Cretaceous and that the subduction of the oceanic ridge and arc were triggered by trench retreat during the Cenozoic. Therefore, reconstructing the history of plate motion and subduction and tracing the geological and deformation records in continents play a significant role in revealing the effects of complex plate motions and the interactions of plate boundary forces on plate-mantle coupling and plate motion-intracontinental deformation coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.