Abstract

Recent advances in attosecond science in combination with the well-established techniques of nanofabrication have led to the new research field of attosecond nanophysics. One central goal is the characterization and manipulation of electromagnetic fields on the attosecond and nanometer scale. This has so far remained challenging both theoretically and experimentally. One major obstacle is the inhomogeneity of the electric fields. We present a general model below, which allows the description of attosecond streaking in near fields. It allows the classification into different regimes as well as the reconstruction of the electric fields at the surface. In addition, we discuss the case of parallel polarization of the streaking fields to the surface, which has so far not been considered for attosecond streaking from metallic surfaces. Finally, we review recent measurements of the electric field and response function of a gold nanotaper. Our results are highly relevant for future attosecond streaking experiments in inhomogeneous fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.