Abstract

BackgroundAtomic Force Microscopy (AFM) is an experimental technique to study structure-function relationship of biomolecules. AFM provides images of biomolecules at nanometer resolution. High-speed AFM experiments produce a series of images following dynamics of biomolecules. To further understand biomolecular functions, information on three-dimensional (3D) structures is beneficial. MethodWe aim to recover 3D information from an AFM image by computational modeling. The AFM image includes only low-resolution representation of a molecule; therefore we represent the structures by a coarse grained model (Gaussian mixture model). Using Monte-Carlo sampling, candidate models are generated to increase similarity between AFM images simulated from the models and target AFM image. ResultsThe algorithm was tested on two proteins to model their conformational transitions. Using a simulated AFM image as reference, the algorithm can produce a low-resolution 3D model of the target molecule. Effect of molecular orientations captured in AFM images on the 3D modeling performance was also examined and it is shown that similar accuracy can be obtained for many orientations. ConclusionsThe proposed algorithm can generate 3D low-resolution protein models, from which conformational transitions observed in AFM images can be interpreted in more detail. General significanceHigh-speed AFM experiments allow us to directly observe biomolecules in action, which provides insights on biomolecular function through dynamics. However, as only partial structural information can be obtained from AFM data, this new AFM based hybrid modeling method would be useful to retrieve 3D information of the entire biomolecule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.