Abstract

Chlorophylls preserved in lake sediments have been used as a proxy to infer past trophic status. Recently, it has been demonstrated that visible-near-infrared (VNIR) reflectance spectroscopy can provide a rapid and non-destructive estimation of fossil chlorophylls from alpine lake sediments. The present study explores, (a) the applicability of VNIR reflectance spectroscopy to reconstructing historical productivity from boreal and saline lakes, and (b) the ability of an inference model combining all lake types to reconstruct historical chlorophyll concentrations from lake sediments. Results revealed that regardless of the lake type, a common sediment spectral feature of a reflectance trough centered near 675 nm, was observed. Additionally, the amplitude of reflectance in the VNIR region differs within and among lakes depending on their trophic states. The inferred concentration of total chlorophylls and derivatives from sediment spectral properties reflected a recent nutrient enrichment in most of the study lakes. Predicted chlorophyll concentration, when plotted against high-pressure liquid chromatography (HPLC) measured concentration combining all lake types, was found to be statically significant (r 2 = 0.80, P < 0.01). Collectively, results from this study indicate that regardless of the lake type, a common chlorophyll absorption feature near 675 nm can be detected, which is associated with contrasting limnological settings and, therefore, can be used as a viable tool to reconstruct paleoproductivity. A similar approach can be implemented for rapid and non-destructive detection of historical lake water quality in a wide range of lake sediments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.