Abstract

The emerging star of single atomic site (SAS) catalyst has been regarded as the most promising Pt-substituted electrocatalyst for oxygen reduction reaction (ORR) in anion-exchange membrane fuel cells (AEMFCs). However, the metal loading in SAS directly affects the whole device performance. Herein, we report a dual nitrogen source coordinated strategy to realize high dense Cu-N4 SAS with a metal loading of 5.61 wt% supported on 3D N-doped carbon nanotubes/graphene structure wherein simultaneously performs superior ORR activity and stability in alkaline media. When applied in H2 /O2 AEMFC, it could reach an open-circuit voltage of 0.90 V and a peak power density of 324 mW cm-2 . Operando synchrotron radiation analyses identify the reconstruction from initial Cu-N4 to Cu-N4 /Cu-nanoclusters (NC) and the subsequent Cu-N3 /Cu-NC under working conditions, which gradually regulate the d-band center of central metal and balance the Gibbs free energy of *OOH and *O intermediates, benefiting to ORR activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.