Abstract

Frequency Hopping (FH) signal is widely used in military filed especially in military communication for its good anti-jamming performance and multiple access capability. With the increase of FH signal's band width, it makes a huge pressure on traditional Analog to Digital Converter. Theory of compressed sensing (CS) enables a successful reconstruction of sparse signal by sampling at a sub-Nyquist sample rate. In this paper, we apply CS into frequency hopping communication signal's reconstruction and explore the available improvement. We adopt the Random Demodulator scheme, which is a popular architecture in Analog to Information Converter (AIC), to obtain the digital sequence and realize a precise reconstruction with high possibility at a sub-Nyquist sampling rate. Then some improvements are made on the construction of observation matrix to enhance the adaptation in sampling. Besides, K-SVD algorithm is deployed to train an overcomplete dictionary which is used as sparse matrix. Simulations are performed to verify the reconstruction performance of this scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call