Abstract
For functional reconstruction of fibrocartilage, it is necessary to reproduce the essential mechanical property exhibited by natural fibrocartilage. The distinctive mechanical property of fibrocartilage is originated from the specific histological features of fibrocartilage composed of highly aligned type I collagen (Col I) and an abundant cartilaginous matrix. While the application of tensile stimulation induces highly aligned Col I, our study reveals that it also exerts an antichondrogenic effect on scaffold-free tissues constructed with meniscal chondrocytes (MCs) and induces downregulation of Sox-9 expression and attenuated glycosaminoglycan production. Modulation of mechanotransduction by blocking nuclear translocation of Yes-associated protein (YAP) ameliorated the antichondrogenic effect in the presence of tensile stimulation. Since MCs subjected to mechanical doses either by surface stiffness or tensile stimulation showed reversibility of YAP status even after a long-term exposure to mechanotransduction, fibrocartilage tissue was constructed by sequentially inducing tissue alignment by tensile stimulation followed by inducing cartilaginous matrix production in a tension-released state. The minimal tensile dose to constitute durable tissue alignment was screened by investigating the alignment of cytoskeleton and Col I after culturing the scaffold-free tissue constructs with various tensile doses (10% static tension for 1, 3, 7, and 10 days) followed by maintaining in a released state for 5 days. Fluorescence-conjugated phalloidin binding and immunofluorescence of Col I indicated that the duration of static tension for more than 7 days resulted in durable tissue alignment for at least 5 days in the tension-released state. The tissues subjected to tensile stimulation for 7 days followed by 14 days in a released state in chondrogenic media resulted in abundant cartilaginous matrix as well as uniaxial anisotropic alignment. Our results show that the optimized tensile dose can facilitate the successful reconstruction of fibrocartilage by modulating the characteristics of matrix production by MCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.