Abstract

The Sr/Ca of coral skeletons demonstrates potential as an indicator of sea surface temperatures (SSTs). However, the glacial-interglacial SST ranges predicted from Sr/Ca of fossil corals are usually higher than from other marine proxies. We observed infilling of secondary aragonite, characterized by high Sr/Ca ratios, along intraskeletal pores of a fossil coral from Papua New Guinea that grew during the penultimate deglaciation (130 {+-} 2 ka). Selective microanalysis of unaltered areas of the fossil coral indicates that SSTs at {approx}130 ka were {le} 1 C cooler than at present in contrast with bulk measurements (combining infilled and unaltered areas) which indicate a difference of 6-7 C. The analysis of unaltered areas of fossil skeletons by microprobe techniques may offer a route to more accurate reconstruction of past SSTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call