Abstract

A detailed analysis of the quaternion generic Jacobi-Fourier moments (QGJFMs) for color image description is presented. In order to reach numerical stability, a recursive approach is used during the computation of the generic Jacobi radial polynomials. Moreover, a search criterion is performed to establish the best values for the parameters [Formula: see text] and [Formula: see text] of the radial Jacobi polynomial families. Additionally, a polar pixel approach is taken into account to increase the numerical accuracy in the calculation of the QGJFMs. To prove the mathematical theory, some color images from optical microscopy and human retina are used. Experiments and results about color image reconstruction are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.